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Abstract

The primary observational goals of the Sloan Digital Sky Survey are to obtain CCD

imaging of 10,000 deg2 of the north Galactic cap in five passbands, with a limiting

magnitude in the r-band of 22.5, to obtain spectroscopic redshifts of 106 galaxies
and 105 quasars, and to obtain similar data for three ∼ 200 deg2 stripes in the south

Galactic cap, with repeated imaging to allow co-addition and variability studies in

at least one of these stripes. The resulting photometric and spectroscopic galaxy

datasets allow one to map the large scale structure traced by optical galaxies over a

wide range of scales to unprecedented precision. Results relevant to the large scale
structure of our Universe include: a flat model with a cosmological constant ΩΛ = 0.7

provides a good description of the data; the galaxy-galaxy correlation function shows

departures from a power law which are statistically significant; and galaxy clustering

is a strong function of galaxy type.

1.1 Introduction to the SDSS

The Sloan Digital Sky Survey (SDSS; York et al. 2000) is the result of

an international collaborative effort which includes scientists from the U.S., Japan

and Germany (see http://www.sdss.org for details). In brief, the survey uses

a dedicated 2.5 meter telescope located at the Apache Point Observatory in New
Mexico. Images are obtained by drift scanning with a mosaic camera of 30 2048x2048

CCDs positioned in six columns and five rows (Gunn et al. 1998), which gives a field

of view of 3 × 3 deg2, with a spatial scale of 0.4 arcsec pix−1 in five bandpasses (u,

g, r, i, z) with central wavelengths (3560, 4680, 6180, 7500, 8870Å) (Fukugita et al.

1996). The effective exposure time is 54.1 seconds through each CCD. The SDSS
image processing software provides several global photometric parameters for each

object, which are obtained independently in each of the five bands. The data are

flux-calibrated by comparison with a set of overlapping standard-star fields calibrated

with a 0.5-m “Photometric Telescope”.

The SDSS takes spectra only for a target subsample of calibrated imaging data
(Strauss et al. 2002). Spectra are obtained using a multi-object spectrograph which

observes 640 objects at once. The wavelength range of each spectrum is 3800 −

9200 Å. The instrumental dispersion is log10 λ = 10−4dex/pixel which corresponds
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to 69 km s−1 per pixel. Each spectroscopic plug plate, 1.5 degrees in radius, has 640

fibers, each 3 arcsec in diameter. Two fibers cannot be closer than 55 arcsec due
to the physical size of the fiber plug. Typically ∼ 500 fibers per plate are used for

galaxies, ∼ 90 for QSOs, and the remaining for sky spectra and spectrophotometric

standard stars.

At the time of writing, the SDSS had imaged roughly ∼ 4, 500 square degrees;

∼ 265, 000 galaxies and ∼ 35, 000 QSOs had both photometric and spectroscopic
information. The first 460 square degrees and 50,000 spectra have been made public

in an Early Data Release (see Stoughton et al. 2002, which includes many technical

details of the survey), and roughly four times this will be made available in early

2003.
Data from the multi-waveband SDSS has already made significant contributions

to our knowledge of the structure of our Milky Way galaxy and its satellites, correla-

tions between galaxy observables, such as luminosity, size, velocity dispersion, color,

chemical composition, star-formation rate, etc., and how these depend on galaxy

environment, active galactic nuclei, high redshift quasars, the Lyα forest and the
epoch of reionization. But in this article I will focus exclusively on published results

from the SDSS about the large-scale structure of the Universe.

1.2 Galaxy clustering

In the most successful theoretical models, galaxies grew by gravitational

instability from initial seed fluctuations which left their imprint on the CMB. The

statistics of these initial fluctuations are expected to be Gaussian, so that complete

information about these fluctuations is encoded in the shape of the power spectrum

P (k) of the initial density fluctuation field. Nonlinear gravitational instability is
expected to modify the shape of P (k), and to make the fluctuation field at the

present time rather non-Gaussian. These changes are expected to be less severe

on large scales, although, because gravity must compete with the expansion of the

universe, what is meant by ‘large’ depends on the amplitude of the initial fluctuations
and on the background cosmology. Thus, the large-scale distribution of galaxies at

the present time encodes a wealth of cosmological information; one of the principal

scientific goals of the SDSS collaboration is to extract this information. On smaller

scales, the clustering is sensitive to the nonlinear gastrophysics of galaxy formation.

A generic prediction of most galaxy formation models is that clustering should be
a strong function of galaxy type: more luminous galaxies are expected to be more

strongly clustered. The SDSS database is ideally suited to quantifying how clustering

depends on galaxy properties.

With this in mind we discuss measures of clustering in the SDSS angular photo-
metric catalogs first. Although these lack the three-dimensional information present

in redshift surveys, so most of the clustering signal is washed out by projection ef-

fects, angular catalogs are competitive because they have so many more galaxies

than spectroscopic surveys. Section 1.3 presents the angular two-point functions,

ω(θ) and C`, measured in various apparent magnitude limited catalogs drawn from
the SDSS database. These can be thought of as measurements of the three dimen-

sional power spectrum P (k) through different windows. It then shows the result of

inverting these measurements to derive constraints on the shape and amplitude of
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P (k). Constraints on P (k) which were obtained more directly from the angular data,

without first estimating w(θ) or C`, are also described.
Section 1.4 presents results from the three dimensional catalogs. These are consid-

erably sparser, since spectra are only taken for objects with r-band magnitudes less

than about 17.5, whereas the photometry is complete to r < 22.5. Measurements of

clustering in these are complicated by the fact that we only measure the redshift of

a galaxy, not the comoving distance to it—the measured redshift depends both on
the distance to the object and the component of its motion along the line-of-sight.

Therefore, measures of clustering in redshift space are distorted compared to cluster-

ing in real space. If motions are driven by gravity alone, then the difference depends

on cosmology in a predictable way—at least on very large scales. Although the data
available at present do not probe these large scales, when the survey is complete, the

SDSS dataset will provide an exquisite test of whether or not gravitational instability

is the sole source of large scale motions. On the smaller scales (< 15 Mpc) probed

by the present data, galaxy clustering is a strong function of galaxy type—this is

highlighted in Section 1.4. Moreover, the SDSS measurements clearly show that the
two-point correlation function of galaxies, long described as a simple power-law, does

in fact show a statistically significant feature on scales of a few Mpc.

One of the great virtues of the accurate multi-band photometry of the SDSS is that

it allows one to make reasonably precise estimates of galaxy redshifts for most objects
even when spectra are not available. Measurements of clustering in these photometric

redshift catalogs provide the benefit of large galaxy numbers associated with the

photometric catalogs, while the photometric redshift estimate can be used to reduce

the amount by which the clustering signal is washed-out by projection. Moreover,

since the photometric catalog is considerably deeper than the spectroscopic one, it
allows one to probe the evolution of clustering out to considerably higher redshifts.

These measurements offer a promising way of estimating the evolution of clustering

out to redshifts of order unity.

For want of space, I only present results from the lowest order measures of clus-
tering: two point statistics. Higher-order clustering measures such as the moments

of counts-in-cells (Szapudi et al. 2002) and the void distribution, the bispectrum,

the n-point correlation functions, and topological measures such as the genus (Hoyle

et al. 2002) and other Minkowski functionals have also been, or currently are being

studied. The high quality of the SDSS data also allows various measurements of the
weak gravitational lensing effect: McKay et al. (2002) describe galaxy-galaxy shear

measurements, and projects to study galaxy-galaxy and galaxy-quasar magnification

bias are underway. Also, Nichol et al. (2000) and Bahcall et al. (2002) describe what

has been learnt from galaxy clusters in the SDSS, and what the future holds for such
studies.

1.3 Angular clustering

In theory, the two point correlation function ω(θ) and the angular power

spectrum C` are Fourier (actually Legendre) transforms of one another. Therefore,
in theory, they contain the same information. In practice, incomplete sky coverage

and other complications mean that the measured values of these two quantities are

not equivalent, so the SDSS collaboration has measured both.
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Fig. 1.1. The angular correlation function ω(θ) in different magnitude lim-
ited catalogs drawn from the SDSS database (from Connolly et al. 2002).

1.3.1 The angular correlation function ω(θ)

In studies of large scale structure, galaxies are treated as points, and the

statistics of point processes are used to quantify galaxy clustering. One of the sim-

plest of these statistics is the two-point correlation function which measures the

excess number of (galaxy) pairs, relative to an unclustered (Poisson) distribution, as
a function of pair separation. Operationally, the two point correlation function is

estimated by generating an unclustered random catalog with the same geometry as

the survey, and then measuring

ω(θ) ≡
DD − 2DR − RR

RR

where DD, DR and RR are data–data, data–random, and random–random pair

counts in bins of θ + δθ in the data and random catalogs.

Previous measurements of ω(θ), primarily from wide-field photographic plate sur-
veys of the sky, have shown that ω(θ) is rather well-fit (at least at small separations)

by a power law: ω(θ) = (θ/θ0)
1−γ with γ ≈ 1.7. The clustering amplitude, character-

ized by θ0, is expected to depend on the depth of a magnitude limited survey such as
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the SDSS. This is because the galaxy distribution is expected to be clustered isotrop-

ically in three-dimensions. A photometric catalog projects out the radial component
of the pair separation; the same angular separation can result from galaxies which

have vastly different radial separations. Since the clustering amplitude is smaller on

large separations, a deeper catalog contains more pairs which are close in the direc-

tion perpendicular to the line-of-sight but are well-separated along the line-of-sight,

thus diluting the overall clustering signal.

Figure 1.1 shows ω(θ) for SDSS galaxies in a number of different apparent magni-

tude bins. The solid lines show power-law fits to the data, over the range 1′ < θ < 30′

(the fits use the full covariance matrix from Scranton et al. 2002). Notice that the

angular clustering signal on large scales is small: at one degree, ω(θ) ∼ 0.013 for

galaxies with 18 < r∗ < 19. Therefore, sky-position dependent errors in photometric

calibration could dominate the signal. Scranton et al. (2002) describes the results of
a battery of tests designed to quantify, and where possible correct for, the effects of

photometric errors, stellar contamination, seeing, extinction, sky brightness, bright

foreground objects and optical distortions in the camera itself. These tests highlight

one of the great features of the SDSS dataset—its uniformity.

Notice that a power law is a good but not perfect description of the data. Also,

the fainter catalogs, which contain galaxies out to greater distances, have a smaller

angular clustering amplitude. The precise scaling with apparent magnitude depends
on cosmology: a flat universe with Λ = 0.7 provides a much cleaner scaling than does

one in which Ωm = 1 (but we have not shown this here). As a rough guide to the

scales involved, note that the median redshift of galaxies with 18 < r∗ < 19 is zm =

0.18 (this median redshift is 0.24, 0.33 and 0.43 for the successively fainter galaxy
catalogs). In a flat universe with Λ = 0.7, one arcminute at z = 0.18 corresponds to a

distance of 154 h−1kpc, so that 1 h−1Mpc subtends about 0.11 degrees. Clearly, this

estimate of ω(θ) probes clustering on rather small scales. The next section describes

an estimate of the clustering strength on larger scales.

1.3.2 The angular power spectrum C`

There are three good reasons for computing the angular power spectrum C`

in addition to the angular correlation function ω(θ). First, on large scales, where

the Gaussian approximation is most likely to apply, the C` estimators retain all of

the information contained in the angular clustering signal. Therefore, they represent

a lossless compression of the full data set. Second, although both ω(θ) and C`

are obtained by averaging the three dimensional power spectrum P (k) over window

functions, say Wθ(k) and W`(k), the second of these, W`, is considerably narrower.

This is advantageous if, as we will do shortly, one wishes to invert the measured two-

dimensional statistic so as to constrain the form of P (k). Narrow window functions
are particularly important since small scale clustering is expected to be highly non-

Gaussian; if the window function is broad, then one must worry about aliasing from

small scale power. And third, it is possible to produce measurements of C` in which

errors are uncorrelated.

Briefly, the measurement is made by dividing the sky patch into N square pixels

each 12′.5 on a side and computing the density fluctuation δi = ni/n̄i − 1 in each
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Fig. 1.2. The angular power spectrum C` in different magnitude limited
catalogs drawn from the SDSS database. As discussed in the text, a crude
estimate of the underlying three dimensional power spectrum is obtained
by shifting the same curve vertically and horizontally by an amount which
depends on the survey depth: apparently fainter and more distant galaxies
should be shifted farther up (because there is more averaging along the line-
of-sight which has supressed fluctuations) and to the left (because as the
survey depth increases a given angular scale ` corresponds to larger spatial
scales). Dotted lines show the direction of this shift when the survey depth
is changed (from Tegmark et al. 2002).

pixel. These δis can be grouped into a vector d, the covariance matrix of which is

C ≡

〈

dd
′

〉

= S + N where S =
∑

i

piP i.

Here N , assumed to be a diagonal matrix, denotes the contribution to C which comes

from the fact that the galaxy distribution is discrete (this is sometimes called the
shot-noise contribution), and pi denotes the parameters which specify the amplitude

of the power spectrum, and the P i are matrices which are specified by the survey

geometry in terms of Legendre polynomials.
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The next step is to determine the pis from the observed data vector d. This

involves repeatedly multiplying and inverting N × N matrices, which is computa-
tionally expensive. Therefore the Karhunen–Loève method is used to compress the

information content of the map before estimating the power spectrum parameters.

The actual estimates are made using a quadratic estimator which effectively Fourier

transforms the sky map, squares the Fourier modes in the ith power spectrum band,

and averages the results together. The details of this procedure are described in
Tegmark et al. (2002).

The results are shown in Figure 1.2. A multipole ` corresponds roughly to an

angular scale θ ∼ 180◦/`, so that ` = 600, for galaxies at z = 0.18, corresponds

roughly to a spatial scale of order 3 h−1Mpc.

1.3.3 Inversion to the three-dimensional P (k)

The previous sections presented estimates of the angular correlation function
and power spectrum from the SDSS database. These measurements can be used to

derive constraints on the three dimensional power spectrum. This is possible because

the angular power spectrum is related to the three dimensional power spectrum by

C` =

∫

∞

0

dk

k
k3P (k)W`(k), where W`(k) =

2

π

[
∫

∞

0

dr f(r) j`(kr)

]2

.

Here f is the probability distribution for the comoving distance r to a random galaxy

in the survey (which, in a photometric survey, is not measured), j` is a spherical

Bessel function, and we have ignored the fact that the power spectrum evolves with

redshift (strictly speaking, this expression also makes the standard assumption that

clustering does not depend on luminosity; the next section shows that the data do
not support this assumption, but the quantitative effect on the following analysis

is small). To see what the definition above implies, note that for large values of

`, corresponding to small angular scales, j`(kr) is sharply peaked around kr = `.

Assuming the unknown f(r) varies smoothly, we can set it equal to f(`/k) and take
it out of the integral above, leaving an integral over j` only which can be evaluated

analytically. Thus, in this approximation, `3W`(k) → [(`/k) f(`/k)]2, and

C` →

∫

∞

0

dk

k

k3P (k)

`3

[

`

k
f

(

`

k

)]2

≈
k3

` P (k`)

`3

∫

∞

0

dk

k

[

`

k
f

(

`

k

)]2

,

where the second approximation comes from assuming that the term in square brack-

ets is sharply peaked about its mean value k`. This term depends on the distribution

of comoving distances. To see how, define r∗ ≡
∫

dr rf(r). Then the assumption that

f is peaked means we should set r∗ ≡ β`/k`, where β is a constant of order unity.

Thus, C` ≈ (k`/`)3P (k`) ≈ (β/r∗)
3P (β`/r∗). In other words, C` is a smoothed

version of P (k), which is shifted vertically (by a factor r3
∗
) and horizontally (by r∗)

on a log-log plot, by an amount which depends on the depth of the sample.

On small scales, the angular correlation function is also related to the power

spectrum by a window function:

ω(θ) =

∫

dk

k
k2P (k)Wθ(k) where Wθ(k) =

1

2π

∫

dr Jo(krθ) f2(r),
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Fig. 1.3. Comparison of P (k) obtained by inverting ω(θ) and C` in four
apparent magnitude bins. Error bars are unmarginalized; marginalizing over
the non-zero covariances between k bins makes the error bars much larger
(from Dodelson et al. 2002).

and Jo is a Bessell function. In contrast to the window associated with C`, this Wθ

oscillates around zero, so that it is harder to associate a single wave number k with

the angular ω(θ). Nevertheless, one can still develop techniques for inverting the
measured ω(θ) and C` to obtain the form of P (k). A number of these methods are

summarized in Dodelson et al. (2002).

Clearly, the results of the inversion are sensitive to the assumed form for f(r)
which, in turn, depends on the magnitude limit of the sample and cosmology. (This

is because, at fixed redshift, a flat model with Λ > 0 has more volume than when

Λ = 0. Therefore, if the sample depth is characterized by a median redshift, which is
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observable at least in principle, then the typical physical separation between galaxies

at that redshift is larger in a flat model with Λ > 0.) Figure 1.3 shows the result
of inverting ω(θ) and C` in the four apparent magnitude limited samples presented

earlier; the inversion assumed a flat model with ΩΛ = 0.7. Over the range of scales

where they overlap, the estimates agree with one another.

The implications for P (k) are usually expressed as constraints on the parameters

σ8g = bσ8 and Γ which describe the amplitude (i.e. an up-down shift of all the
points in Figure 1.3) and the shape (how far to the right does P (k) peak). The

subscript g indicates that the measured P (k) is of the galaxy distribution rather than

the dark matter, and the factor b comes from the standard assumption (consistent

with numerical simulations of clustering on large scales) that the power in the two
distributions differs only by a multiplicative linear bias factor. As the figure shows,

the strongest constraints on the shape parameter come from the faintest galaxies

(i.e. the magnitude bin 21 < r < 22): Γ = 0.14+0.11
−0.06 (95% C.L.). The shape of P (k)

also depends on the baryon fraction Ωb/Ωm: increasing this ratio suppresses power

on scales smaller than the peak, and analysis of the full data set will set interesting
limits on this parameter also.

1.3.4 Direct estimates of P (k)

The previous subsection described estimates of the three dimensional P (k)
which were derived by first measuring projected quantities ω(θ) and C`. Since these

are essentially smoothed versions of P (k), an alternative procedure is to circumvent

the initial measurement of projected quantities, and to work instead with quantities

which optimize the signal-to-noise of the dataset. This is the KL approach taken by

Szalay et al. (2002) who first expand the projected galaxy distribution on the sky over
a set of Karhunen-Loève eigenfunctions, and then use a maximum likelihood analysis

to derive constraints on the shape and amplitude of P (k). For a flat universe with a

cosmological constant, they find Γ = 0.188± 0.04 and σ8g = 0.915± 0.06 (statistical

errors only). Since Γ ≈ Ωmh, if we use the HST measurement of the Hubble constant
to set h = 0.7, then the SDSS results imply Ωm ≈ 0.27.

1.4 Clustering in z space

The spectroscopic sample provides galaxy redshifts, and hence a reasonably

accurate distance measurement, so that, in contrast to the angular photometric cat-
alogs, a much stronger clustering signal can be measured. Moreover, because the

redshift is available, it is possible to derive an accurate estimate of the intrinsic

luminosity of each galaxy. This allows one to estimate how clustering depends on

intrinsic, rather than apparent, properties of galaxies such as luminosity and rest-
frame color. This is important because, in magnitude limited surveys like the SDSS,

the most luminous galaxies are visible at the greatest distances, whereas the least

luminous galaxies are only visible nearby. Therefore, the power on the largest scales

is dominated by the clustering of the most luminous galaxies, whereas the power on

smaller scales comes from a mix of galaxy types. If clustering depends on luminos-
ity, then one must account for the changing mix of galaxy types at each scale when

estimating the shape of the power spectrum.

As mentioned previously, peculiar velocities distort clustering statistics in redshift
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Fig. 1.4. Galaxy clustering depends on luminosity. Changing the luminosity
changes the amplitude but not the slope of the correlation function (from
Zehavi et al. 2002).

space. One way of accounting for these distortions is to measure the correlation

function as a function of the separation parallel and perpendicular to the line-of-sight:

ξ2(rp, π). Only separations parallel to the line-of-sight π are affected by peculiar
motions, so that

wp(rp) ≡ 2

∫

∞

0

dπ ξ2(rp, π) = 2

∫

∞

0

dπ ξ
(√

r2
p + π2

)

is independent of redshift-space distortions. Since

P (kp, kπ) ≡

∫

drp

∫

dπ ξ2(rp, π) exp(−ikprp − ikππ),

the quantity P (kp, 0), being the Fourier transform of wp(rp), is also distortion free.

Measurements of the distortion-free correlation function and power spectrum both
show that more luminous galaxies are more strongly clustered than less luminous

galaxies (Figure 1.4). Whereas the amplitude of ξ(r) appears to depend strongly on

luminosity, the shape is approximately independent of L. On the other hand, the
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Fig. 1.5. Galaxy clustering depends on color. Changing the color changes
the slope and amplitude of ξ(r) (from Zehavi et al. 2002).

shape of the correlation function depends strongly on color: redder galaxies have

steeper correlation functions (Figure 1.5).

As discussed by Budavari et al. (2003), these trends are qualitatively consistent
with the following simple model. Suppose there are two types of galaxies, each with

their own clustering pattern (say, a red population with a steeper correlation function

than the blue population). Then the correlation function of the entire sample will be a

weighted sum of the two populations, the weighting being determined by the relative
numbers of the two types. Next, suppose that the amplitude of the correlation

function in subsamples of each population depends on luminosity, and that the scaling

with luminosity is similar for the two populations (on scales larger than 1 Mpc,

this is a good description of the SDSS data; on smaller scales, clustering strength

increases with luminosity for blue galaxies, whereas red galaxies show the opposite
trend). Finally, suppose that the luminosity functions of these two populations have

similar shapes, at least at the luminous end. These requirements guarantee that the

correlation functions of subsamples defined by luminosity will always have the same
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shape, whereas subsamples defined differently will have different shapes. Explaining

why this should be so is an interesting challenge for galaxy formation models.
A first study of clustering using photometric redshifts provides qualitatively similar

results (Budavari et al. 2003). This is extremely encouraging because the use of

photometric redshifts allows one to go considerably fainter than the spectroscopic

dataset allows. In particular, photo-zs offer a cost-effective way of probing clustering

out to redshifts of order unity. That this is possible at all is a tribute to the accuracy
of the SDSS photometry.

Since the full ξ(rp, π) is sensitive to peculiar velocities, whereas wp(rp) is not, a

comparison of the two provides a measurement of galaxy peculiar velocities. On the

small scales to which the present data is most sensitive, the dependence of clustering
on luminosity and type constrains the velocity dispersions of the halos which different

galaxy types populate. The SDSS data show that early-type galaxies populate halos

with larger velocity dispersions (Zehavi et al. 2002), in qualitative agreement with

the fact that such galaxies are much more common in massive clusters than in the

field.
Since the first measurements of Totsuji & Kihara (1969), the galaxy correlation

function has been characterized as a power law. A look through most of the figures

presented here shows that, while a power law is indeed a good description, it is

not perfect. The SDSS correlation functions show rich structure, much of which
is statistically significant. In most ab initio models of ξ(r), power-laws are purely

fortuitous—they are not generic. Explaining the positions of the bumps and wiggles

and their dependence on galaxy type, and hence extracting information from these

features in ξ(r) will become a rich area of research.
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